Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
Expert Syst Appl ; 225: 120104, 2023 Sep 01.
Article in English | MEDLINE | ID: covidwho-2291741

ABSTRACT

The detection of the COronaVIrus Disease 2019 (COVID-19) from Computed Tomography (CT) scans has become a very important task in modern medical diagnosis. Unfortunately, typical resolutions of state-of-the-art CT scans are still not adequate for reliable and accurate automatic detection of COVID-19 disease. Motivated by this consideration, in this paper, we propose a novel architecture that jointly affords the Single-Image Super-Resolution (SISR) and the reliable classification problems from Low Resolution (LR) and noisy CT scans. Specifically, the proposed architecture is based on a couple of Twinned Residual Auto-Encoders (TRAE), which exploits the feature vectors and the SR images recovered by a Master AE for performing transfer learning and then improves the training of a "twinned" Follower AE. In addition, we also develop a Task-Aware (TA) version of the basic TRAE architecture, namely the TA-TRAE, which further utilizes the set of feature vectors generated by the Follower AE for the joint training of an additional auxiliary classifier, so to perform automated medical diagnosis on the basis of the available LR input images without human support. Experimental results and comparisons with a number of state-of-the-art CNN/GAN/CycleGAN benchmark SISR architectures, performed by considering × 2 , × 4 , and × 8 super-resolution (i.e., upscaling) factors, support the effectiveness of the proposed TRAE/TA-TRAE architectures. In particular, the detection accuracy attained by the proposed architectures outperforms the corresponding ones of the implemented CNN, GAN and CycleGAN baselines up to 9.0%, 6.5%, and 6.0% at upscaling factors as high as × 8 .

2.
J Supercomput ; : 1-32, 2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2235264

ABSTRACT

Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%).

3.
J Supercomput ; 78(9): 12024-12045, 2022.
Article in English | MEDLINE | ID: covidwho-1859085

ABSTRACT

We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. Once the model is trained, the encoder can generate the compact hidden representation (the hidden feature vectors) of the training data set. Afterwards, we exploit the obtained hidden representation to build up the target probability density function (PDF) of the training data set by means of kernel density estimation (KDE). Subsequently, in the test phase, we feed a test CT into the trained encoder to produce the corresponding hidden feature vector, and then, we utilise the target PDF to compute the corresponding PDF value of the test image. Finally, this obtained value is compared to a threshold to assign the COVID-19 label or non-COVID-19 to the test image. We numerically check our approach's performance (i.e. test accuracy and training times) by comparing it with those of some state-of-the-art methods.

4.
Expert Syst Appl ; 192: 116366, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1587806

ABSTRACT

Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by human inspection anomalous area in CT images belonging to the COVID-19 disease. Hence, it becomes necessary the exploitation of suitable automatic algorithms able to quick and precisely identify the disease, possibly by using few labeled input data, because large amounts of CT scans are not usually available for the COVID-19 disease. The method proposed in this paper is based on the exploitation of the compact and meaningful hidden representation provided by a Deep Denoising Convolutional Autoencoder (DDCAE). Specifically, the proposed DDCAE, trained on some target CT scans in an unsupervised way, is used to build up a robust statistical representation generating a target histogram. A suitable statistical distance measures how this target histogram is far from a companion histogram evaluated on an unknown test scan: if this distance is greater of a threshold, the test image is labeled as anomaly, i.e. the scan belongs to a patient affected by COVID-19 disease. Some experimental results and comparisons with other state-of-the-art methods show the effectiveness of the proposed approach reaching a top accuracy of 100% and similar high values for other metrics. In conclusion, by using a statistical representation of the hidden features provided by DDCAEs, the developed architecture is able to differentiate COVID-19 from normal and pneumonia scans with high reliability and at low computational cost.

5.
Applied Sciences ; 11(19):8867, 2021.
Article in English | MDPI | ID: covidwho-1438484

ABSTRACT

The global COVID-19 pandemic certainly has posed one of the more difficult challenges for researchers in the current century. The development of an automatic diagnostic tool, able to detect the disease in its early stage, could undoubtedly offer a great advantage to the battle against the pandemic. In this regard, most of the research efforts have been focused on the application of Deep Learning (DL) techniques to chest images, including traditional chest X-rays (CXRs) and Computed Tomography (CT) scans. Although these approaches have demonstrated their effectiveness in detecting the COVID-19 disease, they are of huge computational complexity and require large datasets for training. In addition, there may not exist a large amount of COVID-19 CXRs and CT scans available to researchers. To this end, in this paper, we propose an approach based on the evaluation of the histogram from a common class of images that is considered as the target. A suitable inter-histogram distance measures how this target histogram is far from the histogram evaluated on a test image: if this distance is greater than a threshold, the test image is labeled as anomaly, i.e., the scan belongs to a patient affected by COVID-19 disease. Extensive experimental results and comparisons with some benchmark state-of-the-art methods support the effectiveness of the developed approach, as well as demonstrate that, at least when the images of the considered datasets are homogeneous enough (i.e., a few outliers are present), it is not really needed to resort to complex-to-implement DL techniques, in order to attain an effective detection of the COVID-19 disease. Despite the simplicity of the proposed approach, all the considered metrics (i.e., accuracy, precision, recall, and F-measure) attain a value of 1.0 under the selected datasets, a result comparable to the corresponding state-of-the-art DNN approaches, but with a remarkable computational simplicity.

6.
Computation ; 9(1):3, 2021.
Article in English | MDPI | ID: covidwho-1011429

ABSTRACT

In parallel with the vast medical research on clinical treatment of COVID-19, an important action to have the disease completely under control is to carefully monitor the patients. What the detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming at reinforcing the radiography-based recognition of lung infection by COVID-19. In this regard, we make a comparison of the noteworthy approaches devoted to the binary classification of infected images by using DL techniques, then we also propose a variant of a convolutional neural network (CNN) with optimized parameters, which performs very well on a recent dataset of COVID-19. The proposed model’s effectiveness is demonstrated to be of considerable importance due to its uncomplicated design, in contrast to other presented models. In our approach, we randomly put several images of the utilized dataset aside as a hold out set;the model detects most of the COVID-19 X-rays correctly, with an excellent overall accuracy of 99.8%. In addition, the significance of the results obtained by testing different datasets of diverse characteristics (which, more specifically, are not used in the training process) demonstrates the effectiveness of the proposed approach in terms of an accuracy up to 93%.

SELECTION OF CITATIONS
SEARCH DETAIL